Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38559215

RESUMO

Putative G-quadruplex forming sequences (PQS) have been identified in promoter sequences of prominent genes that are implicated among others in cancer and neurological disorders. We explored mechanistic aspects of CRISPR-dCas9-mediated gene expression regulation, which is transient and sequence specific unlike alternative approaches that lack such specificity or create permanent mutations, using the PQS in tyrosine hydroxylase (TH) and c-Myc promoters as model systems. We performed in vitro ensemble and single molecule investigations to study whether G-quadruplex (GQ) structures or dCas9 impede T7 RNA polymerase (RNAP) elongation process and whether orientation of these factors is significant. Our results demonstrate that dCas9 is more likely to block RNAP progression when the non-template strand is targeted. While the GQ in TH promoter was effectively destabilized when the dCas9 target site partially overlapped with the PQS, the c-Myc GQ remained folded and stalled RNAP elongation. We also determined that a minimum separation between the transcription start site and the dCas9 target site is required for effective stalling of RNAP by dCas9. Our study provides significant insights about the factors that impact dCas9-mediated transcription regulation when dCas9 targets the vicinity of sequences that form secondary structures and provides practical guidelines for designing guide RNA sequences.

2.
Biomacromolecules ; 25(2): 1009-1017, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38166360

RESUMO

The layered liquid crystalline phases formed by DNA molecules, which include rigid and flexible segments ("gapped DNA"), enable the study of both end-to-end stacking and side-to-side (helix-to-helix) lateral interactions, forming a model system to study such interactions at physiologically relevant DNA and ion concentrations. The observed layer structure exhibits long-range interlayer and in-layer positional correlations. In particular, the in-layer order has implications for DNA condensation, as it reflects whether these normally repulsive interactions become attractive under certain ionic conditions. Using synchrotron small-angle X-ray scattering measurements, we investigate the impact of divalent Mg2+ cations (in addition to a constant 150 mM Na+) on the stability of the inter- and in-layer DNA ordering as a function of temperature between 5 and 65 °C. DNA constructs with different terminal base pairings were created to mediate the strength of the attractive end-to-end stacking interactions between the blunt ends of the gapped DNA constructs. We demonstrate that the stabilities at a fixed DNA concentration of both interlayer and in-layer order are significantly enhanced even at a few mM Mg2+ concentration. The stabilities are even higher at 30 mM Mg2+; however, a marked decrease is observed at 100 mM Mg2+, suggesting a change in the nature of side-by-side interactions within this Mg2+ concentration range. We discuss the implications of these results in terms of counterion-mediated DNA-DNA attraction and DNA condensation.


Assuntos
Cristais Líquidos , Cátions Bivalentes , DNA/química , Cátions , Temperatura
3.
J Mol Biol ; 436(1): 168205, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37481156

RESUMO

Telomeres and their single stranded overhangs gradually shorten with successive cell divisions, as part of the natural aging process, but can be elongated by telomerase, a nucleoprotein complex which is activated in the majority of cancers. This prominent implication in cancer and aging has made the repetitive telomeric sequences (TTAGGG repeats) and the G-quadruplex structures that form in their overhangs the focus of intense research in the past several decades. However, until recently most in vitro efforts to understand the structure, stability, dynamics, and interactions of telomeric overhangs had been focused on short sequences that are not representative of longer sequences encountered in a physiological setting. In this review, we will provide a broad perspective about telomeres and associated factors, and introduce the agents and structural characteristics involved in organizing, maintaining, and protecting telomeric DNA. We will also present a summary of recent research performed on long telomeric sequences, nominally defined as those that can form two or more tandem G-quadruplexes, i.e., which contain eight or more TTAGGG repeats. Results of experimental studies using a broad array of experimental tools, in addition to recent computational efforts will be discussed, particularly in terms of their implications for the stability, folding topology, and compactness of the tandem G-quadruplexes that form in long telomeric overhangs.


Assuntos
DNA , Quadruplex G , Telomerase , Telômero , DNA/genética , DNA/química , Sequências Repetitivas de Ácido Nucleico/genética , Telomerase/genética , Telômero/genética , Telômero/metabolismo , Humanos , Animais
4.
Analyst ; 148(19): 4655-4658, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37671909

RESUMO

We present single molecule studies demonstrating the capabilities of the FRET-PAINT method to detect secondary structures that would be challenging to detect with alternative methods, particularly single molecule FRET (smFRET). Instead of relying on the change in end-to-end separation as in smFRET, we use the change in accessibility to a small probe as the criterion for secondary structure formation and relative stability. As a model system, we study G-triplex formation by human telomeric repeat sequences in different structural contexts.

5.
Langmuir ; 39(13): 4838-4846, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36952670

RESUMO

Positionally ordered bilayer liquid crystalline nanostructures formed by gapped DNA (GDNA) constructs provide a practical window into DNA-DNA interactions at physiologically relevant DNA concentrations; concentrations several orders of magnitude greater than those in commonly used biophysical assays. The bilayer structure of these states of matter is stabilized by end-to-end base stacking interactions; moreover, such interactions also promote in-plane positional ordering of duplexes that are separated from each other by less than twice the duplex diameter. The end-to-end stacked as well as in-plane ordered duplexes exhibit distinct signatures when studied via small-angle X-ray scattering (SAXS). This enables analysis of the thermal stability of both the end-to-end and side-by-side interactions. We performed synchrotron SAXS experiments over a temperature range of 5-65 °C on GDNA constructs that differ only by the terminal base-pairs at the blunt duplex ends, resulting in identical side-by-side interactions, while end-to-end base stacking interactions are varied. Our key finding is that bilayers formed by constructs with GC termination transition into the monolayer state at temperatures as much as 30 °C higher than for those with AT termination, while mixed (AT/GC) terminations have intermediate stability. By modeling the bilayer melting in terms of a temperature-dependent reduction in the average fraction of end-to-end paired duplexes, we estimate the stacking free energies in DNA solutions of physiologically relevant concentrations. The free-energies thereby determined are generally smaller than those reported in single-molecule studies, which might reflect the elevated DNA concentrations in our studies.


Assuntos
DNA , Espalhamento a Baixo Ângulo , Difração de Raios X , DNA/química , Pareamento de Bases , Temperatura , Termodinâmica , Conformação de Ácido Nucleico
6.
Nucleic Acids Res ; 50(22): 12885-12895, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36511858

RESUMO

Telomeres terminate with a 50-300 bases long single-stranded G-rich overhang, which can be misrecognized as a DNA damage repair site. Shelterin plays critical roles in maintaining and protecting telomere ends by regulating access of various physiological agents to telomeric DNA, but the underlying mechanism is not well understood. Here, we measure how shelterin affects the accessibility of long telomeric overhangs by monitoring transient binding events of a short complementary peptide nucleic acid (PNA) probe using FRET-PAINT in vitro. We observed that the POT1 subunit of shelterin reduces the accessibility of the PNA probe by ∼2.5-fold, indicating that POT1 effectively binds to and protects otherwise exposed telomeric sequences. In comparison, a four-component shelterin stabilizes POT1 binding to the overhang by tethering POT1 to the double-stranded telomeric DNA and reduces the accessibility of telomeric overhangs by ∼5-fold. This enhanced protection suggests shelterin restructures the junction between single and double-stranded telomere, which is otherwise the most accessible part of the telomeric overhang.


Assuntos
Complexo Shelterina , Telômero , DNA/metabolismo , Complexo Shelterina/metabolismo , Telômero/genética , Telômero/metabolismo , Proteínas de Ligação a Telômeros/metabolismo
7.
Front Mol Biosci ; 9: 977113, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072435

RESUMO

We present a collection of single molecule work on the i-motif structure formed by the human telomeric sequence. Even though it was largely ignored in earlier years of its discovery due to its modest stability and requirement for low pH levels (pH < 6.5), the i-motif has been attracting more attention recently as both a physiologically relevant structure and as a potent pH sensor. In this manuscript, we establish single molecule Förster resonance energy transfer (smFRET) as a tool to study the i-motif over a broad pH and ionic conditions. We demonstrate pH and salt dependence of i-motif formation under steady state conditions and illustrate the intermediate states visited during i-motif folding in real time at the single molecule level. We also show the prominence of intermediate folding states and reversible folding/unfolding transitions. We present an example of using the i-motif as an in-situ pH sensor and use this sensor to establish the time scale for the pH drop in a commonly used oxygen scavenging system.

8.
Nat Commun ; 13(1): 5152, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056028

RESUMO

Replication Protein A (RPA) is a heterotrimeric complex that binds to single-stranded DNA (ssDNA) and recruits over three dozen RPA-interacting proteins to coordinate multiple aspects of DNA metabolism including DNA replication, repair, and recombination. Rtt105 is a molecular chaperone that regulates nuclear localization of RPA. Here, we show that Rtt105 binds to multiple DNA binding and protein-interaction domains of RPA and configurationally staples the complex. In the absence of ssDNA, Rtt105 inhibits RPA binding to Rad52, thus preventing spurious binding to RPA-interacting proteins. When ssDNA is available, Rtt105 promotes formation of high-density RPA nucleoprotein filaments and dissociates during this process. Free Rtt105 further stabilizes the RPA-ssDNA filaments by inhibiting the facilitated exchange activity of RPA. Collectively, our data suggest that Rtt105 sequesters free RPA in the nucleus to prevent untimely binding to RPA-interacting proteins, while stabilizing RPA-ssDNA filaments at DNA lesion sites.


Assuntos
Proteínas de Ligação a RNA/metabolismo , Proteína de Replicação A/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Replicação do DNA , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Ligação Proteica , Proteínas de Ligação a RNA/química , Recombinação Genética , Proteína de Replicação A/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
9.
Proc Natl Acad Sci U S A ; 119(30): e2202317119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858438

RESUMO

We present single-molecule experimental and computational modeling studies investigating the accessibility of human telomeric overhangs of physiologically relevant lengths. We studied 25 different overhangs that contain 4-28 repeats of GGGTTA (G-Tract) sequence and accommodate one to seven tandem G-quadruplex (GQ) structures. Using the FRET-PAINT method, we probed the distribution of accessible sites via a short imager strand, which is complementary to a G-Tract and transiently binds to available sites. We report accessibility patterns that periodically change with overhang length and interpret these patterns in terms of the underlying folding landscape and folding frustration. Overhangs that have [4n]G-Tracts, (12, 16, 20…) demonstrate the broadest accessibility patterns where the peptide nucleic acid probe accesses G-Tracts throughout the overhang. On the other hand, constructs with [4n+2]G-Tracts, (14, 18, 22…) have narrower patterns where the neighborhood of the junction between single- and double-stranded telomeres is most accessible. We interpret these results as the folding frustration being higher in [4n]G-Tract constructs compared to [4n+2]G-Tract constructs. We also developed a computational model that tests the consistency of different folding stabilities and cooperativities between neighboring GQs with the observed accessibility patterns. Our experimental and computational studies suggest the neighborhood of the junction between single- and double-stranded telomeres is least stable and most accessible, which is significant as this is a potential site where the connection between POT1/TPP1 (bound to single-stranded telomere) and other shelterin proteins (localized on double-stranded telomere) is established.


Assuntos
Complexo Shelterina , Proteínas de Ligação a Telômeros , Telômero , DNA/química , DNA/metabolismo , Quadruplex G , Humanos , Complexo Shelterina/genética , Complexo Shelterina/metabolismo , Imagem Individual de Molécula , Sequências de Repetição em Tandem , Telômero/genética , Telômero/metabolismo , Proteínas de Ligação a Telômeros/metabolismo
10.
ACS Synth Biol ; 10(5): 972-978, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33970608

RESUMO

Using the nuclease-dead Cas9 (dCas9), we targeted in cellulo a G-rich sequence, which contains multiple potentially G-quadruplex (GQ) forming sites, within the human tyrosine hydroxylase (TH) promoter. We demonstrate that transcription can be up or down regulated by targeting different parts of this G-rich sequence. Our results suggest that TH transcription levels correlate with stability of different GQs formed by this sequence and targeting them with dCas9 can modulate their stability. Unlike alternative approaches, regulating TH expression by targeting the promoter GQs with dCas9 enables a specific and potentially transient control and does not require mutations in the sequence. We also investigated whether the presence of GQs in target sequences impacts DNA cleavage activity of Cas9. We discovered significant reduction in cleavage activity when the vicinity of a high-stability GQ was targeted. Furthermore, this reduction is significantly more prominent for the G-rich strand compared to the complementary C-rich strand.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Clivagem do DNA , Quadruplex G , Transcrição Gênica/genética , Linhagem Celular Tumoral , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Regulação da Expressão Gênica , Humanos , Mutação , Neuroblastoma/genética , Neuroblastoma/patologia , Regiões Promotoras Genéticas , Transfecção , Tirosina 3-Mono-Oxigenase/genética
11.
Nucleic Acids Res ; 49(6): 3371-3380, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33693934

RESUMO

Single-stranded telomeric overhangs are ∼200 nucleotides long and can form tandem G-quadruplex (GQ) structures, which reduce their accessibility to nucleases and proteins that activate DNA damage response. Whether these tandem GQs further stack to form compact superstructures, which may provide better protection for longer telomeres, is not known. We report single-molecule measurements where the accessibility of 24-144 nucleotide long human telomeric DNA molecules is interrogated by a short PNA molecule that is complementary to a single GGGTTA repeat, as implemented in the FRET-PAINT method. Binding of the PNA strand to available GGGTTA sequences results in discrete FRET bursts which were analyzed in terms of their dwell times, binding frequencies, and topographic distributions. The binding frequencies were greater for binding to intermediate regions of telomeric DNA compared to 3'- or 5'-ends, suggesting these regions are more accessible. Significantly, the binding frequency per telomeric repeat monotonically decreased with increasing telomere length. These results are consistent with telomeres forming more compact structures at longer lengths, reducing accessibility of these critical genomic sites.


Assuntos
Telômero/química , Transferência Ressonante de Energia de Fluorescência , Humanos , Ácidos Nucleicos Peptídicos/metabolismo , Telômero/metabolismo
12.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33731478

RESUMO

Although its mesomorphic properties have been studied for many years, only recently has the molecule of life begun to reveal the true range of its rich liquid crystalline behavior. End-to-end interactions between concentrated, ultrashort DNA duplexes-driving the self-assembly of aggregates that organize into liquid crystal phases-and the incorporation of flexible single-stranded "gaps" in otherwise fully paired duplexes-producing clear evidence of an elementary lamellar (smectic-A) phase in DNA solutions-are two exciting developments that have opened avenues for discovery. Here, we report on a wider investigation of the nature and temperature dependence of smectic ordering in concentrated solutions of various "gapped" DNA (GDNA) constructs. We examine symmetric GDNA constructs consisting of two 48-base pair duplex segments bridged by a single-stranded sequence of 2 to 20 thymine bases. Two distinct smectic layer structures are observed for DNA concentration in the range [Formula: see text] mg/mL. One exhibits an interlayer periodicity comparable with two-duplex lengths ("bilayer" structure), and the other has a period similar to a single-duplex length ("monolayer" structure). The bilayer structure is observed for gap length ≳10 bases and melts into the cholesteric phase at a temperature between 30 °C and 35 °C. The monolayer structure predominates for gap length ≲10 bases and persists to [Formula: see text]C. We discuss models for the two layer structures and mechanisms for their stability. We also report results for asymmetric gapped constructs and for constructs with terminal overhangs, which further support the model layer structures.


Assuntos
DNA/química , Cristais Líquidos/química , Estrutura Molecular , Soluções
13.
ACS Chem Biol ; 16(4): 596-603, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33769784

RESUMO

Clustered regularly interspaced palindromic repeats (CRISPR) and CRISPR-associated (Cas) proteins, particularly Cas9, have provided unprecedented control on targeting and editing specific DNA sequences. If the target sequences are prone to folding into noncanonical secondary structures, such as G-quadruplex (GQ), the conformational states and activity of the CRISPR-Cas9 complex may be influenced, but the impact has not been assessed. Using single molecule FRET, we investigated structural characteristics of the complex formed by CRISPR-Cas9 and target DNA, which contains a potentially GQ forming sequence (PQS) in either the target or the nontarget strand (TS or NTS). We observed different conformational states and dynamics depending on the stability of the GQ and the position of PQS. When PQS was in NTS, we observed evidence for GQ formation for both weak and stable GQs. This is consistent with R-loop formation between TS and crRNA releasing NTS from Watson-Crick pairing and facilitating secondary structure formation in it. When PQS was in TS, R-loop formation was adequate to maintain a weak GQ in the unfolded state but not a GQ with moderate or high stability. The observed structural heterogeneity within the target dsDNA and the R-loop strongly depended on whether the PQS was in TS or NTS. We propose these variations in the complex structures to have functional implications for Cas9 activity.


Assuntos
Proteína 9 Associada à CRISPR/química , Quadruplex G , Sistemas CRISPR-Cas , Conformação de Ácido Nucleico
14.
Chembiochem ; 21(13): 1885-1892, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31972066

RESUMO

Ribosomes are ribonucleoprotein particles that are essential for protein biosynthesis in all forms of life. During ribosome biogenesis, transcription, folding, modification, and processing of rRNA are coupled to the assembly of proteins. Various assembly factors are required to synchronize all different processes that occur during ribosome biogenesis. Herein, the RNA chaperone and RNA strand annealing activity of rRNA modification enzyme ribosome small subunit methyltransferase C (RsmC), which modifies guanine to 2-methylguanosine (m2 G) at position 1207 of 16S rRNA (Escherichia coli nucleotide numbering) located at helix 34 (h34), are reported. A 25-fold increase in the h34 RNA strand annealing rates is observed in the presence of RsmC. Single-molecule FRET experiments confirmed the ability of protein RsmC to denature a non-native structure formed by one of the two h34 strands and to form a native-like duplex. This observed RNA chaperone activity of protein RsmC might play a vital role in the rapid generation of functional ribosomes.


Assuntos
Metiltransferases/metabolismo , RNA Ribossômico 16S/metabolismo , Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Cinética , Metilação , Conformação de Ácido Nucleico , RNA Ribossômico 16S/química
15.
Nucleic Acids Res ; 47(20): 10744-10753, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31544934

RESUMO

G-quadruplex (GQ) stabilizing small molecule (SM) ligands have been used to stabilize human telomeric GQ (hGQ) to inhibit telomerase activity, or non-telomeric GQs to manipulate gene expression at transcription or translation level. GQs are known to inhibit DNA replication unless destabilized by helicases, such as Bloom helicase (BLM). Even though the impact of SM ligands on thermal stability of GQs is commonly used to characterize their efficacy, how these ligands influence helicase-mediated GQ unfolding is not well understood. Three prominent SM ligands (an oxazole telomestatin derivative, pyridostatin, and PhenDC3), which thermally stabilize hGQ at different levels, were utilized in this study. How these ligands influence BLM-mediated hGQ unfolding was investigated using two independent single-molecule approaches. While the frequency of dynamic hGQ unfolding events was used as the metric in the first approach, the second approach was based on quantifying the cumulative unfolding activity as a function of time. All three SM ligands inhibited BLM activity at similar levels, 2-3 fold, in both approaches. Our observations suggest that the impact of SM ligands on GQ thermal stability is not an ideal predictor for their inhibition of helicase-mediated unfolding, which is physiologically more relevant.


Assuntos
Quadruplex G , RecQ Helicases/metabolismo , Humanos , Ligantes , Telômero/metabolismo
16.
Molecules ; 24(8)2019 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-31010019

RESUMO

We performed single molecule studies to investigate the impact of several prominent small molecules (the oxazole telomestatin derivative L2H2-6OTD, pyridostatin, and Phen-DC3) on intermolecular G-quadruplex (i-GQ) formation between two guanine-rich DNA strands that had 3-GGG repeats in one strand and 1-GGG repeat in the other (3+1 GGG), or 2-GGG repeats in each strand (2+2 GGG). Such structures are not only physiologically significant but have recently found use in various biotechnology applications, ranging from DNA-based wires to chemical sensors. Understanding the extent of stability imparted by small molecules on i-GQ structures, has implications for these applications. The small molecules resulted in different levels of enhancement in i-GQ formation, depending on the small molecule and arrangement of GGG repeats. The largest enhancement we observed was in the 3+1 GGG arrangement, where i-GQ formation increased by an order of magnitude, in the presence of L2H2-6OTD. On the other hand, the enhancement was limited to three-fold with Pyridostatin (PDS) or less for the other small molecules in the 2+2 GGG repeat case. By demonstrating detection of i-GQ formation at the single molecule level, our studies illustrate the feasibility to develop more sensitive sensors that could operate with limited quantities of materials.


Assuntos
Quadruplex G/efeitos dos fármacos , Descoberta de Drogas , Estrutura Molecular , Conformação de Ácido Nucleico/efeitos dos fármacos , Oxazóis/química , Oxazóis/farmacologia , Repetições de Trinucleotídeos
17.
Biosens Bioelectron ; 121: 34-40, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30195120

RESUMO

A force sensor concept is presented where fluorescence signal is converted into force information via single-molecule Förster resonance energy transfer (smFRET). The basic design of the sensor is a ~100 base pair (bp) long double stranded DNA (dsDNA) that is restricted to a looped conformation by a nucleic acid secondary structure (NAS) that bridges its ends. The looped dsDNA generates a tension across the NAS and unfolds it when the tension is high enough. The FRET efficiency between donor and acceptor (D&A) fluorophores placed across the NAS reports on its folding state. Three dsDNA constructs with different lengths were bridged by a DNA hairpin and KCl was titrated to change the applied force. After these proof-of-principle measurements, one of the dsDNA constructs was used to maintain the G-quadruplex (GQ) construct formed by thrombin binding aptamer (TBA) under tension while it interacted with a destabilizing protein and stabilizing small molecule. The force required to unfold TBA-GQ was independently investigated with high-resolution optical tweezers (OT) measurements that established the relevant force to be a few pN, which is consistent with the force generated by the looped dsDNA. The proposed method is particularly promising as it enables studying NAS, protein, and small molecule interactions using a highly-parallel FRET-based assay while the NAS is kept under an approximately constant force.


Assuntos
Técnicas Biossensoriais/métodos , DNA/química , Fluorescência , Transferência Ressonante de Energia de Fluorescência , Quadruplex G , Conformação de Ácido Nucleico
18.
Mol Genet Genomics ; 292(3): 483-498, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28150040

RESUMO

In this article, we summarize the knowledge and best practices learned from bulk and single-molecule measurements to address some of the frequently experienced difficulties in single-molecule Förster resonance energy transfer (smFRET) measurements on G-quadruplex (GQ) structures. The number of studies that use smFRET to investigate the structure, function, dynamics, and interactions of GQ structures has grown significantly in the last few years, with new applications already in sight. However, a number of challenges need to be overcome before reliable and reproducible smFRET data can be obtained in measurements that include GQ. The annealing and storage conditions, the location of fluorophores on the DNA construct, and the ionic conditions of the experiment are some of the factors that are of critical importance for the outcome of measurements, and many of these manifest themselves in unique ways in smFRET assays. By reviewing these aspects and providing a summary of best practices, we aim to provide a practical guide that will help in successfully designing and performing smFRET studies on GQ structures.


Assuntos
DNA/genética , Transferência Ressonante de Energia de Fluorescência/métodos , Quadruplex G , Fluorescência , Regiões Promotoras Genéticas/genética , Telômero/genética
19.
Nucleic Acids Res ; 45(1): 288-295, 2017 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-27899628

RESUMO

The potential use of G-quadruplex (GQ) stabilizing small molecules as anti-cancer drugs has created a flurry of activity on various aspects of these molecules. Telomestatin and oxazole telomestatin derivatives (OTD) are some of the most prominent of such molecules, yet the underlying dynamics of their interactions with GQ and the extent of heterogeneities in these interactions are not known. We performed single molecule measurements to study binding kinetics, rotational freedom, and dwell time distributions of a Cy5-labeled OTD (L1Cy5-7OTD) as it interacted with several different GQ structures. Our measurements show that L1Cy5-7OTD dwells on more stable GQ for longer times and binds to such GQ with higher frequency. The dwell times showed a broad distribution, but were longer than a minute for a significant fraction of molecules (characteristic dwell time τ = 192 ± 15 s and τ = 98 ± 15 s for the more and less stable GQ, respectively). In addition, L1Cy5-7OTD might be able to bind to GQ in at least two different primary orientations and occasionally transition between these orientations. The dwell time in one of these orientations was significantly longer than that in the other one, suggesting different stabilities for different binding orientations.


Assuntos
Quadruplex G , Oxazóis/química , Plasmídeos/química , Sítios de Ligação , Carbocianinas/química , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Humanos , Oxazóis/metabolismo , Plasmídeos/metabolismo , Imagem Individual de Molécula , Coloração e Rotulagem/métodos
20.
Biophys J ; 110(12): 2585-2596, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27332117

RESUMO

RECQ5 is one of five members of the RecQ family of helicases in humans, which include RECQ1, Bloom (BLM), Werner (WRN), RECQ4, and RECQ5. Both WRN and BLM have been shown to resolve G-quadruplex (GQ) structures. Deficiencies in unfolding GQ are known to result in DNA breaks and genomic instability, which are prominent in Werner and Bloom syndromes. RECQ5 is significant in suppressing sister chromatid exchanges during homologous recombination but its GQ unfolding activity are not known. We performed single-molecule studies under different salt (50-150 mM KCl or NaCl) and ATP concentrations on different GQ constructs including human telomeric GQ (with different overhangs and polarities) and GQ formed by thrombin-binding aptamer to investigate this activity. These studies demonstrated a RECQ5-mediated GQ unfolding activity that was an order of magnitude weaker than BLM and WRN. On the other hand, BLM and RECQ5 demonstrated similar single-stranded DNA (ssDNA) reeling activities that were not coupled to GQ unfolding. These results demonstrate overlap in function between these RecQ helicases; however, the relatively weak GQ destabilization activity of RECQ5 compared to BLM and WRN suggests that RECQ5 is not primarily associated with GQ destabilization, but could substitute for the more efficient helicases under conditions where their activity is compromised. In addition, these results implicate a more general role for helicase-promoted ssDNA reeling activity such as removal of proteins at the replication fork, whereas the association of ssDNA reeling with GQ destabilization is more helicase-specific.


Assuntos
DNA/metabolismo , Quadruplex G , RecQ Helicases/metabolismo , Trifosfato de Adenosina/metabolismo , Humanos , Cloreto de Potássio/química , Cloreto de Sódio/química , Telômero/metabolismo , Helicase da Síndrome de Werner/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...